# Symmetry Breaking and the Molecular Structure of NO<sub>3</sub><sup>+†</sup>

# Charles E. Miller\*

Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392

#### Joseph S. Francisco<sup>‡</sup>

Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 47907-1393

Received: June 30, 2000; In Final Form: November 29, 2000

The equilibrium structure and vibrational frequencies of the nitrate cation, NO<sub>3</sub><sup>+</sup>, have been investigated with an extensive set of ab initio calculations. Two stationary points were identified on the NO<sub>3</sub><sup>+</sup> potential energy surface: a symmetric  $D_{3h}$  structure and a  $C_{2v}$  ring structure similar to that found for the isoelectronic CO<sub>3</sub> molecule. Geometry optimizations executed at the CCSD(T)/aug-cc-pVTZ level of theory yielded the following data. NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ):  $E_{rel} = 2130 \text{ cm}^{-1}$ ,  $r_e = 1.238 \text{ Å}$ . NO<sub>3</sub><sup>+</sup>( $C_{2v}$ ):  $E_{rel} = 0 \text{ cm}^{-1}$ ,  $r_1 = 1.131 \text{ Å}$ ,  $r_2 = r_3 = 1.309 \text{ Å}$ ,  $\theta = 142.3^\circ$ . Calculations performed at the B3LYP, QCISD, CCSD, and CCSD(T) levels of theory all predict the  $C_{2v}$  structure to be lower in energy than the  $D_{3h}$  structure. Relative energy calculations performed with the Gaussian and complete basis set model chemistry algorithms also predict the  $C_{2v}$  structure to be the most stable NO<sub>3</sub><sup>+</sup> conformation. These results are supported by vibrational frequency calculations which suggest that the  $D_{3h}$  structure may correspond to a second-order saddle point rather than a true minimum on the NO<sub>3</sub><sup>+</sup> potential energy hypersurface. The symmetry breaking observed in the present NO<sub>3</sub><sup>+</sup> calculations is similar to that observed in ab initio studies of the NO<sub>3</sub> equilibrium structure and is used to examine symmetry breaking across the nitrate series NO<sub>3</sub><sup>-</sup>, NO<sub>3</sub>, NO<sub>3</sub><sup>+</sup>.

#### Introduction

The importance of the nitrate radical (NO<sub>3</sub>) in atmospheric chemistry has generated widespread interest in its chemical and physical properties.<sup>1</sup> In particular, the question of whether NO<sub>3</sub> possesses a  $D_{3h}$  or  $C_{2v}$  equilibrium structure has caused considerable controversy, with substantial experimental and theoretical support for each conclusion.<sup>2–28</sup> Ab initio calculations have emphasized the difficulty of the symmetry breaking problem in NO<sub>3</sub> by demonstrating that the potential energy surface is extremely flat in the region of the  $D_{3h}$  minimum.<sup>22–27</sup> Even the most sophisticated levels of theory could not conclusively establish the nature of the  $D_{3h}$  stationary point.<sup>26</sup>

One might deduce the equilibrium structure of NO<sub>3</sub> by examining structural trends in the sequence NO<sub>3</sub><sup>-</sup>, NO<sub>3</sub>, NO<sub>3</sub><sup>+</sup>. Addition of a valence electron to the NO<sub>3</sub> radical forms the well-known nitrate anion, NO3<sup>-</sup>. Overwhelming experimental evidence has established that  $NO_3^-$  possesses a  $D_{3h}$  structure with the equilibrium bond length ranging from 1.22 to 1.27 Å, depending on the environment.<sup>29</sup> Unperturbed NO<sub>3</sub><sup>-</sup> displays no instability with respect to distortion into a lower symmetry configuration. In contrast, Boehm and Lohr identified optimized  $NO_3^+$  structures having both  $D_{3h}$  and  $C_{2v}$  symmetries in ab initio calculations performed at the Hartree-Fock (HF) level of theory with a double- $\zeta$  plus polarization (DZP) basis set.<sup>17</sup> Boehm and Lohr also investigated the relative stabilities of the two structures by calculating single-point energies with Møller-Plesset perturbation theory at the optimized HF/DZP geometries. They found that the energy ordering of the two structures oscillated

<sup>†</sup> Part of the special issue "Harold Johnston Festschrift".

with the order of perturbation employed, ultimately favoring the  $D_{3h}$  structure at the MP4SDTQ level of theory.<sup>17</sup> Monks et al.<sup>15</sup> argued that NO<sub>3</sub> and NO<sub>3</sub><sup>+</sup> possess virtually identical  $D_{3h}$ equilibrium structures on the basis of the sharp onset and lack of vibrational structure in the threshold region of their photoionization spectrum. Monks et al. also performed MCSCF calculations, based on the optimized structures calculated by Boehm and Lohr, from which they concluded that the theoretical evidence was unambiguous about the nitrate cation structure being  $D_{3h}$ .<sup>15</sup> However, Heryadi and Yeager <sup>18</sup> found reasonable agreement between experimental<sup>16</sup> and theoretical ionization energies for NO<sub>3</sub><sup>+</sup> using either  $D_{3h}$  or  $C_{2\nu}$  structures, while Lee and Wright<sup>19</sup> suggested that an ionic [NO<sup>+</sup>···O<sub>2</sub>] complex represents the most stable form of "NO3+". Thus, it appears that symmetry breaking complicates the structural characteristics of NO<sub>3</sub> and NO<sub>3</sub><sup>+</sup> and that the stable NO<sub>3</sub><sup>-</sup>( $D_{3h}$ ) structure is the exceptional case.

There are several physical properties that make  $NO_3^+$  more tractable to ab initio characterization than  $NO_3$ . Many of the technical difficulties encountered in theoretical descriptions of the  $NO_3$  radical arise due to the need to treat spatial and spin contributions to the electronic structure simultaneously. The ground state of  $NO_3^+$  assumes a closed-shell electronic configuration. The resulting singlet state eliminates the spin contribution and assesses directly the impact that the electronic configuration has on the molecular geometry. This work presents a detailed ab initio investigation of  $NO_3^+$  and its implications for the symmetry breaking problem in  $NO_3$ .

#### Methods

<sup>\*</sup> Corresponding author. Email: cmiller@haverford.edu.

<sup>&</sup>lt;sup>‡</sup>Email: jfrancis@chem.purdue.edu.

All calculations were performed using the *Gaussian 98* program suite.<sup>30</sup> Ab initio structure optimizations and vibrational



**Figure 1.** Structural comparison of the optimized NO<sub>3</sub>( $D_{3h}$ ) (ref 25), NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ), NO<sub>3</sub>( $C_{2\nu}$ ) (2L1S, ref 25), NO<sub>3</sub><sup>+</sup>( $C_{2\nu}$ ), and CO<sub>3</sub> (ref 51) structures.

frequencies were calculated at the Hartree-Fock (HF), quadratic configuration interaction with single and double substitutions (QCISD),<sup>31</sup> and coupled cluster (CCSD and CCSD(T))<sup>31</sup> levels of theory. Further ab initio optimizations were performed with the Møller-Plesset perturbation theory (MPn), including the second-order Møller-Plesset with single and double excitations (MP2), the third-order Møller-Plesset with single and double excitations (MP3), the fourth-order Møller-Plesset with single, double, and quadruple excitations (MP4SDQ), and the fourthorder Møller-Plesset with single, double, triple, and quadruple excitations (MP4SDTQ).<sup>32–34</sup> Additional structure optimizations and vibrational frequencies were calculated using the Becke3-Lee-Yang-Parr (B3LYP) density functional.<sup>35</sup> All geometry optimizations were converged to better than 0.001 Å for bond lengths and 0.1° for bond angles. Optimizations at the MP2, QCISD, and B3LYP levels of theory employed the analytical gradient method developed by Schlegel.<sup>36</sup> Optimizations performed using higher-order Møller-Plesset methods, CCSD, and CCSD(T) employed the eigenvalue following algorithm.<sup>37,38</sup> The Pople 6-31G(d) to  $6-311+G(3df)^{39-43}$  basis sets and Dunning's correlation consistent basis sets<sup>44-48</sup> were employed in this study. Harmonic vibrational frequencies were calculated analytically for the HF and B3LYP methods and numerically for all other levels of theory.

## **Results and Discussion**

**1. Geometry Optimizations.** The  $NO_3^+$  structure optimizations performed in this study were guided by previous theoretical work on NO317-28 and NO3+.15-18 We initiated exploratory calculations at the Hartree-Fock level of theory from the optimized NO3 geometries reported by Stanton et al.25 Optimizations of the NO<sub>3</sub><sup>+</sup> equilibrium structure begun from the NO<sub>3</sub>- $(D_{3h})$  structure ( $r_e = 1.236$  Å) yielded  $D_{3h}$  structures with  $r_e$ ranging from 1.17 to 1.18 Å. Optimizations of the  $NO_3^+$ equilibrium structure begun from the NO<sub>3</sub> 2L1S  $C_{2v}$  structure (two long and one short N–O bond lengths:  $r_{\rm L} = 1.266$  Å,  $r_{\rm S}$ = 1.198 Å,  $\theta_{O^*NO}$  = 126.4°) yielded  $C_{2v}$  ring structures similar to those found for the isoelectronic CO<sub>3</sub> molecule (Figure 1).<sup>49–51</sup> Optimizations of the  $NO_3^+$  equilibrium structure begun from the NO<sub>3</sub> 1L2S  $C_{2v}$  structure (one long and two short N–O bond lengths:  $r_{\rm L} = 1.351$  Å,  $r_{\rm S} = 1.206$  Å,  $\theta_{\rm O*NO} = 114.0^{\circ}$ ) resulted in dissociation and were not considered further. Note that none of these optimizations produced a NO<sub>3</sub><sup>+</sup>( $C_{2v}$ ) structure similar to the one with 120° bond angles but different N-O bond lengths which Monks et al. identified.<sup>15</sup> Geometry optimizations for other levels of theory were performed starting from the results of the HF or B3LYP calculations. The final set of optimized NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) and NO<sub>3</sub><sup>+</sup>( $C_{2\nu}$ ) structures are summarized in Tables 1 and 2, respectively.

Basis set effects were evaluated by optimizing the  $NO_3^+$  structures for each basis set with each theoretical method. The results in Tables 1 and 2 demonstrate that for each level of theory the optimized geometries systematically approach a single structure as the basis set size increased. This structural convergence was typically observed with the 6-311+G(2df) and aug-cc-pVTZ basis sets. Similar structures were also obtained with smaller basis set calculations, but these appear to occur accidentally rather than from complete structural convergence.

Closer examination of Tables 1 and 2 shows that the largest structural changes are associated with the addition of polarization functions. For example, the N–O bond lengths of the  $D_{3h}$  conformers generally contract by 0.010–0.015 Å upon expanding the basis set from 6-31G(d) to 6-311G(d). This structural change is accompanied by an energy stabilization of 0.1–0.3 hartrees. Augmenting the basis with additional *d*- or *f*-functions changes the bond lengths by a few thousandths of an Angstrom at most. Diffuse functions have little effect on the optimized  $D_{3h}$  geometries, despite the importance of lone-pair electrons in NO<sub>3</sub><sup>+</sup>. For the correlation-consistent basis sets, an increase from cc-pVDZ to cc-pVTZ causes a contraction of 0.005–0.010 Å in the N–O bond length and stabilizes the energy by as much as 0.25 hartrees, depending on the level of theory.

These trends contrast with the results of the  $C_{2\nu}$  calculations where there is larger sensitivity to the basis set changes. The N–O bond lengths  $r_1$  and  $r_2$  contract by 0.010–0.015 Å upon expanding the basis set from 6-31G(d) to 6-311G(d), similar to the behavior observed for the  $D_{3h}$  conformers. Adding a second *d*-function to the basis leaves  $r_1$  relatively unchanged but causes  $r_2$  to elongate by as much as 0.010 Å. Expanding the basis set from 6-311+G(2d) to 6-311+G(2df) causes  $r_2$  to recontract by approximately 0.010 Å, offsetting the elongation observed in the previous basis set expansion. Augmenting the basis set with additional *d*-functions produces minimal changes in the optimized structures. Increasing the basis set size from cc-pVDZ to cc-pVTZ induces contraction in both  $r_1$  and  $r_2$ . Interestingly, the bond angle typically varies by no more than 0.5° over all basis set changes.

Comparing the fully optimized NO<sub>3</sub><sup>+</sup> structures shows that the geometries converge across levels of theory. The optimized NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) structures obtained at the B3LYP, QCISD, and CCSD levels of theory agree quite well, all predicting equilibrium N–O bond lengths  $r_e \approx 1.215$  Å. The  $r_e$  value calculated at the B3LYP/6-311+G(3df) and QCISD/6-311+G(3df) levels of theory only differ by 0.002 Å, while the  $r_e$  value calculated at the CCSD/6-311+G(3df) level of theory is less than 0.004 Å longer than the QCISD/6-311+G(3df) value. These results contrast sharply with the HF/6-311+G(3df) optimization, which yields the significantly shorter result  $r_e = 1.171$  Å, consistent with previously reported HF results.<sup>15,17</sup>

Structure optimizations for NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) performed at the CCSD(T) level of theory illustrate the importance of triple excitations. The optimized CCSD(T) geometries yield N–O bond lengths that are generally 0.023 Å longer than the CCSD geometries calculated with the same basis sets. Stanton and co-workers found that large basis sets and triple excitations were indispensable to the correct description of NO<sub>3</sub>( $D_{3h}$ ).<sup>25–27</sup> The present results indicate that an accurate theoretical characterization of NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) also requires large basis sets and a treatment of the electron correlation extending through triple excitations.

The importance of extended electron correlation is also manifest in the NO<sub>3</sub><sup>+</sup>( $C_{2\nu}$ ) calculations. The optimized B3LYP,

TABLE 1: Optimized Structures and Energies for  $NO_3^+(D_{3h})$ 

| theory/basis set   | R(NO)/Å | energy/hartrees | theory/basis set     | R(NO)/Å | energy/hartrees |
|--------------------|---------|-----------------|----------------------|---------|-----------------|
| HF/6-31G(d)        | 1.179   | -278.21396      | MP4SDQ/6-311G(2d)    | 1.221   | -279.20786      |
| HF/6-311G(d)       | 1.174   | -278.28928      | MP4SDQ/6-31+G(d)     | 1.026   | -278.71155      |
| HF/6-311G(2d)      | 1.172   | -278.30698      | MP4SDQ/6-311+G(d)    | 1.224   | -279.16161      |
| HF/6-31+G(d)       | 1.180   | -278.22007      | MP4SDQ/6-311+G(2d)   | 1.222   | -279.21575      |
| HF/6-311+G(d)      | 1.174   | -278.29441      | MP4SDQ/6-311+G(2df)  | 1.215   | -279.29108      |
| HF/6-311+G(2d)     | 1.173   | -278.31099      | MP4SDQ/6-311+G(3df)  | 1.214   | -279.30446      |
| HF/6-311+G(2df)    | 1.172   | -278.32238      | MP4SDQ/cc-pVDZ       | 1.226   | -279.06644      |
| HF/6-311+G(3df)    | 1.171   | -278.32634      | MP4SDQ/cc-pVTZ       | 1.216   | -279.30676      |
| B3LYP/6-31G(d)     | 1.228   | -279.72081      | MP4SDQ/aug-cc-pVDZ   | 1.228   | -279.11870      |
| B3LYP/6-311G(d)    | 1.221   | -279.79851      | QCISD/6-31G(d)       | 1.234   | -279.02374      |
| B3LYP/6-311G(2d)   | 1.220   | -279.81140      | QCISD/6-311G(d)      | 1.222   | -279.15277      |
| B3LYP/6-31+G(d)    | 1.228   | -279.72710      | QCISD/6-311G(2d)     | 1.222   | -279.20993      |
| B3LYP/6-311+G(d)   | 1.222   | -279.80336      | QCISD/6-31+G(d)      | 1.235   | -279.03557      |
| B3LYP/6-311+G(2d)  | 1.221   | -279.81531      | QCISD/6-311+G(d)     | 1.224   | -279.16175      |
| B3LYP/6-311+G(2df) | 1.219   | -279.82312      | QCISD/6-311+G(2d)    | 1.223   | -279.21744      |
| B3LYP/6-311+G(3df) | 1.218   | -279.82608      | QCISD/6-311+G(2df)   | 1.217   | -279.29425      |
| B3LYP/cc-pVDZ      | 1.224   | -279.75087      | QCISD/6-311+G(3df)   | 1.216   | -279.30791      |
| B3LYP/cc-pVTZ      | 1.219   | -279.83138      | QCISD/cc-pVDZ        | 1.226   | -279.06856      |
| B3LYP/aug-cc-pVDZ  | 1.225   | -279.77015      | QCISD/cc-pVTZ        | 1.218   | -279.30992      |
| B3LYP/aug-cc-pVTZ  | 1.219   | -279.83444      | QCISD/aug-cc-pVDZ    | 1.229   | -279.12134      |
| MP2/6-31G(d)       | 1.294   | -279.15102      | QCISD/aug-cc-pVTZ    | 1.218   | -279.30992      |
| MP2/6-311G(d)      | 1.280   | -279.34484      | CCSD/6-31G(d)        | 1.230   | -279.01651      |
| MP2/6-311G(2d)     | 1.280   | -279.41445      | CCSD/6-311G(d)       | 1.218   | -279.14481      |
| MP2/6-31+G(d)      | 1.294   | -279.16474      | CCSD/6-311G(2d)      | 1.218   | -279.20228      |
| MP2/6-311+G(d)     | 1.280   | -279.35570      | CCSD/6-31+G(d)       | 1.230   | -279.02817      |
| MP2/6-311+G(2d)    | 1.281   | -279.42282      | CCSD/6-311+G(d)      | 1.219   | -279.15369      |
| MP2/6-311+G(2df)   | 1.272   | -279.49917      | CCSD/6-311+G(2d)     | 1.219   | -279.20967      |
| MP2/6-311+G(3df)   | 1.269   | -279.51966      | CCSD/6-311+G(2df)    | 1.213   | -279.28677      |
| MP2/cc-pVDZ        | 1.286   | -279.18887      | CCSD/6-311+G(3df)    | 1.212   | -279.30043      |
| MP2/cc-pVTZ        | 1.272   | -279.48398      | CCSD/cc-pVDZ         | 1.222   | -279.06147      |
| MP2/aug-cc-pVDZ    | 1.285   | -279.24544      | CCSD/cc-pVTZ         | 1.214   | -279.30231      |
| MP2/aug-cc-pVTZ    | 1.270   | -279.51163      | CCSD/aug-cc-pVDZ     | 1.225   | -279.11432      |
| MP3/6-31G(d)       | 1.209   | -278.98237      | CCSD/aug-cc-pVTZ     | 1.214   | -279.31930      |
| MP3/6-311G(d)      | 1.198   | -279.10948      | CCSD(T)/6-31G(d)     | 1.253   | -279.08712      |
| MP3/6-311G(2d)     | 1.198   | -279.17058      | CCSD(T)/6-311G(d)    | 1.241   | -279.22230      |
| MP3/6-31+G(d)      | 1.210   | -278.99270      | CCSD(T)/6-311G(2d)   | 1.242   | -279.28480      |
| MP3/6-311+G(d)     | 1.198   | -279.11744      | CCSD(T)/6-31+G(d)    | 1.254   | -279.10017      |
| MP3/6-311+G(2d)    | 1.199   | -279.17725      | CCSD(T)/6-311+G(d)   | 1.242   | -279.23227      |
| MP3/6-311+G(2df)   | 1.195   | -279.25983      | CCSD(T)/6-311+G(2d)  | 1.243   | -279.29298      |
| MP3/6-311+G(3df)   | 1.194   | -279.27394      | CCSD(T)/6-311+G(2df) | 1.236   | -279.37290      |
| MP3/cc-pVDZ        | 1.202   | -279.02929      | CCSD(T)/6-311+G(3df) | 1.235   | -279.38766      |
| MP3/cc-pVTZ        | 1.195   | -279.27571      | CCSD(T)/cc-pVDZ      | 1.244   | -279.13100      |
| MP3/aug-cc-pVDZ    | 1.206   | -279.08333      | CCSD(T)/cc-pVTZ      | 1.237   | -279.38936      |
| MP4SDQ/6-31G(d)    | 1.234   | -279.02210      | CCSD(T)/aug-cc-pVDZ  | 1.248   | -279.18906      |
| MP4SDQ/6-311G(d)   | 1.223   | -279.15227      | CCSD(T)/aug-cc-pVTZ  | 1.237   | -279.40824      |

QCISD, and CCSD geometries converge toward a single  $C_{2\nu}$ ring structure with  $r_1 \approx 1.131$  Å,  $r_2 \approx 1.310$  Å, and  $\theta \approx 142.3^\circ$ . However, a comparison of the CCSD and CCSD(T) calculations shows that the CCSD(T) structures predict an elongation of  $r_1$ by ~0.010 Å, an elongation of  $r_2$  by ~0.015 Å, and a contraction of  $\theta$  by ~1.0°. The NO<sub>3</sub><sup>+</sup>( $C_{2\nu}$ ) geometries calculated at the HF level of theory significantly underestimate the values obtained with more extensive treatments of the electron correlation, as was the case with NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ).

The identification of optimized  $NO_3^+(D_{3h})$  and  $NO_3^+(C_{2v})$  structures across all levels of theory indicates that the  $NO_3^+$  potential energy surface supports multiple stationary points. Ab initio wave functions describing  $NO_3^+$  are thus likely to exhibit symmetry breaking. Unlike the  $NO_3$  radical, the  $D_{3h}$  and  $C_{2v}$  geometries of  $NO_3^+$  possess dramatically different structural characteristics, implying that the symmetry breaking in this system could be considerable.

**2. Energetics and Vibrational Frequencies.** The question of whether the minimum-energy  $NO_3^+$  structure possesses  $D_{3h}$  or  $C_{2v}$  symmetry was first addressed by Boehm and Lohr.<sup>17</sup> They optimized both the  $NO_3^+(D_{3h})$  and  $NO_3^+(C_{2v})$  structures at the HF/DZP level of theory and then employed these structures in a series of MPn single-point energy calculations. On the basis

of the MP4SDTQ/DZP//HF/DZP energies, Boehm and Lohr concluded that  $NO_3^+(D_{3h})$  was the more stable structure.<sup>17</sup> However, as shown in Tables 1 and 2 and discussed in Section 1, it appears that extensive electron correlation methods are required to obtain accurate  $NO_3^+$  structures. Since the  $NO_3^+$  structures optimized at the HF level of theory differ significantly from the CCSD(T) calculations, the conclusions Boehm and Lohr drew from their MPn//HF/DZP single-point calculations are questionable.

To investigate the performance of the MPn method for NO<sub>3</sub><sup>+</sup>, we calculated MPn/6-31G(d)//HF/6-31G(d) energies and  $\Delta E(D_{3h} - C_{2\nu})$  for NO<sub>3</sub><sup>+</sup>. Figure 2a shows that the prediction of which NO<sub>3</sub><sup>+</sup> structure is most stable depends on the degree of perturbation invoked, as reported by Boehm and Lohr.<sup>17</sup> We also performed full MPn/6-31G(d) optimizations of the  $D_{3h}$  and  $C_{2\nu}$  structures to determine if  $\Delta E(D_{3h} - C_{2\nu})$  oscillated due to unrelaxed geometries. Figure 2b demonstrates that even the fully relaxed MPn structures exhibit fluctuations in the  $(D_{3h} - C_{2\nu})$ energy difference as the degree of perturbation treatment varies. Figure 3shows that the  $\Delta E(D_{3h} - C_{2\nu})$  is well behaved as a function of basis set size for the MP2, MP3, and MP4SDQ levels of theory. The results collected in Tables 1 and 2 also show that the best MPn NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) and NO<sub>3</sub><sup>+</sup>( $C_{2\nu}$ ) structures deviate

TABLE 2: Optimized Structures and Energies for  $NO_3^+(C_{2\nu})$ 

| theory/basis set       | R1/Å      | R2/Å  | A1/deg | energy/hartrees          | theory/basis set           | R1/Å    | R2/Å    | A1/deg | energy/hartrees          |
|------------------------|-----------|-------|--------|--------------------------|----------------------------|---------|---------|--------|--------------------------|
| HF/6-31G(d)            | 1.111     | 1.274 | 143.6  | -278.32064               | MP4SDQ/6-31+G(d)           | 1.152   | 1.327   | 141.6  | -279.06943               |
| HF/6-311G(d)           | 1.102     | 1.264 | 144.0  | -278.39386               | MP4SDQ/6-311+G(d)          | 1.139   | 1.311   | 141.5  | -279.19347               |
| HF/6-311G(2d)          | 1.101     | 1.264 | 143.7  | -278.41384               | MP4SDQ/6-311+G(2d)         | 1.137   | 1.321   | 141.6  | -279.25314               |
| HF/6-31+G(d)           | 1.111     | 1.274 | 143.7  | -278.32697               | MP4SDQ/6-311+G(2df)        | 1.133   | 1.310   | 142.0  | -279.33436               |
| HF/6-311+G(d)          | 1.102     | 1.265 | 144.0  | -278.39968               | MP4SDQ/6-311+G(3df)        | 1.133   | 1.307   | 142.1  | -279.34783               |
| HF/6-311+G(2d)         | 1.101     | 1.270 | 143.7  | -278.41769               | MP4SDO/cc-pVDZ             | 1.143   | 1.317   | 141.3  | -279.09919               |
| HF/6-311+G(2df)        | 1.100     | 1.266 | 143.8  | -278.43308               | MP4SDO/cc-pVTZ             | 1.134   | 1.311   | 142.1  | -279.35159               |
| HF/6-311+G(3df)        | 1.100     | 1.266 | 143.9  | -278.43765               | MP4SDO/aug-cc-pVDZ         | 1.146   | 1.322   | 141.5  | -279.15372               |
| B3LYP/6-31G(d)         | 1.144     | 1.324 | 142.6  | -279.74551               | MP4SDO/aug-cc-pVTZ         |         |         |        |                          |
| B3LYP/6-311G(d)        | 1.134     | 1.316 | 142.5  | -279.81869               | OCISD/6-31G(d)             | 1.151   | 1.331   | 141.6  | -279.05900               |
| B3LYP/6-311G(2d)       | 1.133     | 1.320 | 142.6  | -279.83517               | OCISD/6-311G(d)            | 1.138   | 1.313   | 141.5  | -279.18427               |
| B3LYP/6-31+G(d)        | 1.144     | 1.324 | 142.6  | -279.75085               | OCISD/6-311G(2d)           | 1.136   | 1.323   | 141.7  | -279.24579               |
| B3LYP/6-311+G(d)       | 1.134     | 1.316 | 142.5  | -279.82361               | OCISD/6-31+G(d)            | 1.151   | 1.331   | 141.6  | -279.07033               |
| B3LYP/6-311+G(2d)      | 1.133     | 1.320 | 142.6  | -279.83868               | OCISD/6-311+G(d)           | 1.138   | 1.314   | 141.5  | -279.19335               |
| B3LYP/6-311+G(2df)     | 1.132     | 1.316 | 142.7  | -279.84887               | OCISD/6-311+G(2d)          | 1.136   | 1.323   | 141.6  | -279.25273               |
| B3LYP/6-311+G(3df)     | 1.131     | 1.315 | 142.8  | -279.85210               | OCISD/6-311+G(2df)         | 1.132   | 1.312   | 142.1  | -279.33377               |
| B3LYP/cc-pVDZ          | 1.139     | 1.319 | 142.6  | -279.77256               | OCISD/6-311+G(3df)         | 1.131   | 1.310   | 142.2  | -279.34724               |
| B3LYP/cc-pVTZ          | 1.132     | 1.317 | 142.7  | -279.85827               | OCISD/cc-pVDZ              | 1.142   | 1.321   | 141.3  | -279.10023               |
| B3LYP/aug-cc-pVDZ      | 1.140     | 1.321 | 142.7  | -279.79330               | OCISD/cc-pVTZ              | 1.133   | 1.313   | 142.2  | -279.35081               |
| B3LYP/aug-cc-nVTZ      | 1 1 3 1   | 1 318 | 142.8  | -279.86140               | OCISD/aug-cc-pVDZ          | 1 145   | 1 326   | 141.5  | -27915458                |
| MP2/6-31G(d)           | 1 162     | 1 331 | 141.0  | -279.08069               | OCISD/aug-cc-pVTZ          | 1.1 10  | 1.520   | 111.0  | 277.13 130               |
| MP2/6-311G(d)          | 1 1 4 9   | 1 313 | 140.6  | -279 27248               | CCSD/6-31G(d)              | 1 1 4 9 | 1 326   | 141.8  | -279.05252               |
| MP2/6-311G(2d)         | 1 1 1 4 7 | 1 325 | 140.9  | -279.34674               | CCSD/6-311G(d)             | 1 1 3 5 | 1.320   | 141.8  | -27917757                |
| MP2/6-31+G(d)          | 1 163     | 1 331 | 140.9  | -279.09321               | CCSD/6-311G(2d)            | 1 1 3 4 | 1 318   | 141.0  | -279.23916               |
| MP2/6-311+G(d)         | 1 1 4 9   | 1 314 | 140.6  | -279 28209               | CCSD/6-31+G(d)             | 1 1 4 9 | 1 325   | 141.8  | -279.06372               |
| MP2/6-311+G(2d)        | 1 1 1 4 7 | 1 325 | 140.9  | -279.35423               | CCSD/6-311+G(d)            | 1.149   | 1 309   | 141.8  | -279.18654               |
| MP2/6-311+G(2df)       | 1 142     | 1 314 | 140.9  | -279.43629               | CCSD/6-311+G(2d)           | 1 1 3 4 | 1 318   | 141.8  | -279.24600               |
| MP2/6-311+G(3df)       | 1 1 1 4 1 | 1 311 | 141.2  | -279.45683               | CCSD/6-311+G(2df)          | 1 1 30  | 1.307   | 142.2  | -27932758                |
| MP2/cc-nVDZ            | 1 1 5 3   | 1 321 | 140.6  | -279.11755               | CCSD/6-311+G(3df)          | 1 1 30  | 1.307   | 142.2  | -279.32100               |
| MP2/cc-pVTZ            | 1 142     | 1 314 | 140.0  | -279.42261               | CCSD/cc-nVDZ               | 1 140   | 1 315   | 141.5  | -279.09398               |
| MP2/aug_cc_pVDZ        | 1.142     | 1 327 | 140.8  | -279 17/71               | CCSD/cc-pVDZ               | 1 1 3 1 | 1 308   | 142.3  | -279 34453               |
| MP2/aug-cc-pVTZ        | 1.150     | 1 313 | 1/1 2  | -279 //903               | CCSD/aug-cc-pVDZ           | 1.1.51  | 1.300   | 141.7  | -279.1/1833              |
| MP3/6-31G(d)           | 1 1/3     | 1 314 | 141.2  | -279 02993               | CCSD/aug-cc-pVDZ           | 1 1 3 1 | 1 309   | 141.7  | -279.36128               |
| MP3/6-311G(d)          | 1 1 3 0   | 1 297 | 142.4  | -279.15553               | CCSD(T)/6-31G(d)           | 1.151   | 1 339   | 140.6  | -279.09259               |
| MP3/6-311G(2d)         | 1.130     | 1.207 | 142.0  | -279.21851               | CCSD(T)/6-311G(d)          | 1.157   | 1 322   | 140.0  | -279.2235                |
| MP3/6 31+C(d)          | 1.120     | 1 314 | 142.5  | -279.04072               | CCSD(T)/6.311G(2d)         | 1.143   | 1.322   | 140.1  | -279.22304               |
| MP3/6-311+G(d)         | 1.144     | 1.314 | 142.4  | -279.16/23               | CCSD(T)/6-31+G(d)          | 1.145   | 1 339   | 140.5  | -279.10/85               |
| MP3/6 311 + G(2d)      | 1.130     | 1.207 | 142.5  | -279.20516               | CCSD(T)/6.311+G(d)         | 1.1.50  | 1 3 2 3 | 140.1  | -270 23330               |
| MP3/6 311 + G(2df)     | 1.120     | 1 208 | 142.5  | -279.22510               | CCSD(T)/6.311+G(d)         | 1.140   | 1.323   | 140.1  | -279.23339               |
| $MD2/6 211 \pm C(2df)$ | 1.125     | 1.290 | 142.7  | 279.31140                | CCSD(T)/6-311+O(2d)        | 1.144   | 1.333   | 140.5  | -270 28107               |
| $MP2/a_0 pVD7$         | 1.125     | 1.290 | 142.0  | -279.32324               | $CCSD(T)/6.211 \pm C(2df)$ | 1.140   | 1.322   | 141.1  | -279.30197<br>-270.30620 |
| MP2/cc-pVDZ            | 1.155     | 1.304 | 142.5  | -279.07270<br>-270.22840 | CCSD(T)/co-pVDZ            | 1.139   | 1.320   | 141.2  | -279.39029<br>-270.12291 |
| MD2/oug og pVD7        | 1.120     | 1.277 | 142.0  | -270 12702               | CCSD(T)/cc-p VDZ           | 1.149   | 1.330   | 140.0  | -270 20042               |
| MPASDO/6 21C(d)        | 1.13/     | 1.309 | 142.4  | -270 05771               | CCSD(T)/cc-p v TZ          | 1.141   | 1.323   | 141.5  | -219.39942               |
| MD4SDQ/0-310(0)        | 1.104     | 1.302 | 140.7  | -270 19927               | CCSD(T)/aug-cc-pVDZ        | 1.132   | 1.333   | 140.5  | -219.19219               |
| MD4SDQ/0-311G(0)       | 1.139     | 1.309 | 141.0  | -270 24622               | CCSD(1)/aug-cc-pv1Z        | 1.141   | 1.323   | 141.3  | -219.41/98               |
| WIF43DQ/0-311G(20)     | 1.13/     | 1.520 | 141.0  | -219.24023               |                            |         |         |        |                          |

significantly from one another and from our best NO<sub>3</sub><sup>+</sup> structures, the CCSD(T)/aug-cc-pVTZ results. Since there is no obvious relationship between  $\Delta E(D_{3h} - C_{2v})$  and the structural deviations as the degree of Møller–Plesset perturbation varies, we conclude that through the fourth order the MPn series fails to provide an accurate treatment of NO<sub>3</sub><sup>+</sup>. Furthermore, we cannot support the conclusion of Monks et al. that calculations at the MP4 level unambiguously show the symmetry of the minimum energy NO<sub>3</sub><sup>+</sup> structure to have  $D_{3h}$  symmetry.<sup>15</sup>

Figure 4 shows that the B3LYP, QCISD, CCSD, and CCSD-(T)  $(D_{3h} - C_{2v})$  energy differences exhibit reasonable behavior. The  $C_{2v}$  structure is predicted to be lower in energy than the  $D_{3h}$  structure for all four levels of theory. This contradicts the conclusion of Monks et al. regarding the MP4 calculations as well as their CAS-MCSCF calculations that placed NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) 9090 cm<sup>-1</sup> lower in energy than NO<sub>3</sub><sup>+</sup>( $C_{2v}$ ).<sup>15</sup> We note that Monks et al. did not verify the nature of the optimized NO<sub>3</sub><sup>+</sup> structures they obtained by calculating vibrational frequencies (see below). Calculations at the CCSD(T)/6-311+G(3df) level of theory place NO<sub>3</sub><sup>+</sup>( $C_{2v}$ ) 1900 cm<sup>-1</sup> below NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ); this difference increases to 2130 cm<sup>-1</sup> at the CCSD(T)/aug-cc-pVTZ level of theory. The NO<sub>3</sub><sup>+</sup> ( $D_{3h} - C_{2v}$ ) energy difference was also evaluated using the Gaussian<sup>52-55</sup> and complete basis set<sup>56–61</sup> model chemistries to verify the energetics obtained from the CCSD(T) calculations. The results in Table 3 show that the model chemistry calculations all indicate that the  $C_{2v}$  structure is lower in energy than the  $D_{3h}$  structure. The overwhelming weight of theoretical evidence thus predicts significant structural and energetic symmetry breaking in NO<sub>3</sub><sup>+</sup>.

Harmonic vibrational frequency calculations were performed to confirm that the optimized  $C_{2\nu}$  and  $D_{3h}$  structures represent true minima on the NO<sub>3</sub><sup>+</sup> potential energy surface. These results are presented in Tables 4 and 5. At the MP2 and MP3 levels of theory, we obtained reasonable values for the NO<sub>3</sub><sup>+</sup>( $C_{2\nu}$ ) frequencies but unphysically large frequencies for one of the e' modes of NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ); the MP4SDQ and MP4SDTQ levels of theory yielded imaginary frequencies for this mode. The results from the MP2 and MP3 calculations are consistent with the MP2/6-31G(d) results reported by Lee and Wright<sup>19</sup> and further emphasize the inadequacy of the MPn series for treating NO<sub>3</sub><sup>+</sup>.

The NO<sub>3</sub><sup>+</sup>( $C_{2v}$ ) vibrational frequencies calculated at the B3LYP, QCISD, CCSD, and CCSD(T) levels of theory agree reasonably well, as shown in Table 4. Systematic exploration of the vibrational frequencies with the 6-31G(d) basis set demonstrates that NO<sub>3</sub><sup>+</sup>( $C_{2v}$ ) is a true minimum energy structure for each of these levels of theory. Vibrational frequencies



**Figure 2.** (A)  $NO_3^+$  ( $D_{3h} - C_{2v}$ ) energy differences determined for several MPn/6-31G(d)//HF/6-31G(d) calculations. (B) Same as in panel A, but energies now calculated using the NO<sub>3</sub><sup>+</sup> structures optimized at the specified MPn level of theory.



**Figure 3.** Convergence of the NO<sub>3</sub><sup>+</sup> ( $D_{3h} - C_{2\nu}$ ) energy difference with increasing basis set size for calculations using the MP2, MP3, and MP4SDQ levels of theory. The MP4SDTQ/6-31G(d) energy point is included for reference to this level of theory.



**Figure 4.** Convergence of the NO<sub>3</sub><sup>+</sup>  $(D_{3h} - C_{2\nu})$  energy difference with increasing basis set size for calculations using the B3LYP, QCISD, CCSD, and CCSD(T) levels of theory.

calculated at the B3LYP/6-311+G(3df) and CCSD(T)/6-311+G-(3df) levels are in good agreement with the 6-31G(d) calculations conducted using these two methods. Closer examination

TABLE 3: Model Chemistry Energies (0 K) for NO<sub>3</sub><sup>+</sup>

| method  | $\frac{\text{NO}_3^+(C_{2v})}{\text{(hartrees)}}$ | $NO_3^+ (D_{3h})$<br>(hartrees) | $\frac{\Delta E(D_{3h}-C_{2v})}{(\mathrm{cm}^{-1})}$ |
|---------|---------------------------------------------------|---------------------------------|------------------------------------------------------|
| G1      | -279.44389                                        | -279.42974                      | 3105                                                 |
| G2MP2   | -279.43579                                        | -279.42371                      | 2651                                                 |
| G2      | -279.44269                                        | -279.42904                      | 2995                                                 |
| G3B3    | -279.63585                                        | -279.63174                      | 903                                                  |
| CBS-q   | -279.50633                                        | -279.50322                      | 683                                                  |
| CBS-Q   | -279.45797                                        | -279.44525                      | 2791                                                 |
| CBS-QB3 | -279.45874                                        | -279.44983                      | 1954                                                 |

TABLE 4: Vibrational Frequencies (cm<sup>-1</sup>) Calculated for  $NO_3^+(D_{3h})$ 

| theory/basis set <sup>a</sup> | $\omega_1(a_1')$ | $\omega_2(a_2'')$ | ω <sub>3</sub> (e') | ω <sub>4</sub> (e')                |
|-------------------------------|------------------|-------------------|---------------------|------------------------------------|
| MP2/6-31G(d)                  | 891              | 615               | 567                 | 10166                              |
| MP3/6-31G(d)                  | 1306             | 773               | 668                 | 7349                               |
| MP4SDQ/6-31G(d)               | 725              | 4260 <i>i</i>     | {1540, 488}         | {1605 <i>i</i> , 2535 <i>i</i> }   |
| MP4SDTQ/6-31G(d)              | 684              | 473               | {713, 704}          | {2588 <i>i</i> , 2583 <i>i</i> }   |
| B3LYP/6-31G(d)                | 1149             | 729               | 1354                | 296                                |
| QCISD/6-31G(d)                | 2157             | 720               | {820, 240}          | {35460 <i>i</i> , 28266 <i>i</i> } |
| CCSD/6-31G(d)                 | 1171             | 762               | $\{854, 869\}$      | {2588 <i>i</i> , 2929 <i>i</i> }   |
|                               |                  |                   |                     |                                    |

 $^{\it a}$  The CCSD(T)/6-31G(d) vibrational frequency calculation failed to converge.

TABLE 5: Vibrational Frequencies (cm<sup>-1</sup>) Calculated for  $NO_3^+(C_{2\nu})$ 

| theory/basis set     | $\omega_1(a_1)$ | $\omega_2(a_1)$ | $\omega_3(a_1)$ | $\omega_4(b_2)$ | $\omega_5(b_2)$ | $\omega_6(b_1)$ |
|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| MP2/6-31G(d)         | 1803            | 1052            | 646             | 971             | 642             | 534             |
| MP3/6-31G(d)         | 2046            | 1150            | 688             | 1026            | 561             | 612             |
| MP4SDQ/6-31G(d)      | 2407            | 1251            | 687             | 988             | 489             | 1853 <i>i</i>   |
| MP4SDTQ/6-31G(d)     | 1784            | 968             | 549             | 795             | 501             | 627             |
| B3LYP/6-31G(d)       | 2009            | 1105            | 690             | 902             | 531             | 612             |
| QCISD/6-31G(d)       | 1986            | 1039            | 578             | 972             | 538             | 607             |
| CCSD/6-31G(d)        | 2004            | 1076            | 610             | 1004            | 548             | 612             |
| CCSD(T)/6-31G(d)     | 1908            | 990             | 487             | 937             | 521             | 601             |
| B3LYP/6-311+G(3df)   | 2001            | 1101            | 697             | 888             | 540             | 628             |
| CCSD(T)/6-311+G(3df) | 1943            | 1032            | 541             | 952             | 544             | 625             |

of the values in Table 4 shows that the vibrational frequencies change by less than 5% when increasing the basis set from 6-31G(d) to 6-311+G(3df) and that there are no gross changes in the normal mode assignments. The CCSD(T)/6-311+G(3df) frequencies should be considered as the most accurate values obtained in the present work.

In contrast, agreement among the  $NO_3^+(D_{3h})$  vibrational frequency calculations is poor, especially for the degenerate modes  $\omega_3$  and  $\omega_4$ . The QCISD/6-31G(d) and CCSD/6-31G(d) calculations produce large, imaginary frequencies for  $\omega_4$ , and the CCSD(T)/6-31G(d) calculations failed to converge. At the B3LYP/6-31G(d) level, all of the vibrational frequencies are positive, and the problematic  $\omega_4$  mode has a value of 296 cm<sup>-1</sup>. The B3LYP calculation returns a real vibrational frequency for  $\omega_4$  because the density functional methodology tends to avoid artifactual spatial symmetry breaking in the equilibrium geometry region even when the unrestricted HF wave function breaks symmetry, as discussed by Sherrill et al. for NO<sub>3</sub>.<sup>62</sup> The B3LYP calculation would therefore be less susceptible to the symmetrybreaking effects that affect the QCISD, CCSD, and CCSD(T) methods. However, it is well-known that the B3LYP method encounters difficulties in correctly describing the properties of transition states and saddle points. Our QCISD and CCSD results, coupled with the failure of the CCSD(T) calculation to converge successfully, suggest that the  $D_{3h}$  structure represents a second-order saddle point on the NO<sub>3</sub><sup>+</sup> potential energy surface rather than a true minimum. Thus, the vibrational frequency calculations also favor the  $C_{2v}$  structure as the true minimum and may be interpreted as an additional manifestation of symmetry breaking in  $NO_3^+$ .

**3. Symmetry Breaking in NO<sub>3</sub> and NO<sub>3</sub><sup>+</sup>.** The difficulties in characterizing the equilibrium structures for the nitrate series  $NO_3^-$ ,  $NO_3$ ,  $NO_3^+$  poses an interesting chemical problem. The nitrate anion  $NO_3^-$  possesses the 24-electron molecular orbital configuration

$$[Core](1a'_1)^2(1a''_2)^2(3e')^4(4e')^4(1e'')^4(1a'_2)^2$$

that results in a robust  $D_{3h}$  equilibrium structure. The removal of a single electron from the 1a'\_2 orbital induces second-order Jahn–Teller interactions and creates nearly isoenergetic  $D_{3h}$  and  $C_{2v}$  minima in the NO<sub>3</sub> radical.<sup>23–27</sup> This was elegantly demonstrated in the photoelectron spectra of NO<sub>3</sub><sup>-</sup> recorded by Weaver et al.<sup>11</sup> The very flat nature of the NO<sub>3</sub> potential energy surface in the  $D_{3h}$  region leads to structural instability and manifests itself as the well-known NO<sub>3</sub> symmetry breaking problem.<sup>22–27</sup> The ionization of NO<sub>3</sub> into NO<sub>3</sub><sup>+</sup> results in the loss of the unpaired 1a'\_2 electron. One might anticipate that the NO<sub>3</sub><sup>+</sup> electron configuration [Core](1a'\_1)<sup>2</sup>(1a'\_2)<sup>2</sup>(3e)<sup>4</sup> (4e')<sup>4</sup>(1e'')<sup>4</sup> would favor further distortion away from the symmetric  $D_{3h}$  geometry into a stable  $C_{2v}$  structure, but the available photoionization data suggests that NO<sub>3</sub><sup>+</sup> assumes a  $D_{3h}$  configuration.<sup>15,16</sup>

The ab initio calculations performed in the present study clearly indicate that the  $C_{2v}$  ring structure corresponds to the minimum energy NO<sub>3</sub><sup>+</sup> configuration. The 2130 cm<sup>-1</sup>  $\Delta E(D_{3h} - C_{2v})$  calculated at the CCSD(T)/aug-cc-pVTZ level of theory is 1 order of magnitude larger than the  $\Delta E(D_{3h} - C_{2v})$  in NO<sub>3</sub> and demonstrates the degree of symmetry breaking in NO<sub>3</sub><sup>+</sup>. The large structures further emphasize the symmetry breaking in NO<sub>3</sub><sup>+</sup>: the planar configuration about the nitrogen atom is maintained, but the  $C_{2v}$  structure resembles a nitrosyl ring compound analogous to the carbonyl ring structure calculated for the isoelectronic CO<sub>3</sub> complex<sup>49-51</sup> (see Figure 1). We found no stable Y-shaped NO<sub>3</sub><sup>+</sup> structure with angles deviating slightly form 120°, similar to the 1L2S or 2L1S structures reported by Stanton et al.<sup>25</sup> for NO<sub>3</sub>.

The optimized NO<sub>3</sub><sup>+</sup>( $C_{2v}$ ) structure differs so markedly from the  $X(2A'_2)NO_3(D_{3h})$  structure that the Franck–Condon factors linking the two structures should be small. Thus, one might expect that the threshold region of the photoionization spectrum would be dominated by NO<sub>3</sub>( $D_{3h}$ )  $\rightarrow$  NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) transitions but that the transitions would exhibit vibrational progressions. The behavior of the photoionization spectrum at higher energies may display characteristics representative of both NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) and NO<sub>3</sub><sup>+</sup>( $C_{2v}$ ) structures, as suggested by Heryadi and Yeager.<sup>18</sup> It appears that the contradiction between the experimental photoionization spectrum and the theoretical results for NO<sub>3</sub><sup>+</sup> cannot be resolved at present.

## Conclusions

Ab initio calculations have revealed that there is a significant symmetry-breaking problem associated with the equilibrium structure of the NO<sub>3</sub><sup>+</sup> cation. Sophisticated electron correlation and model chemistry methods predict that the lowest-energy NO<sub>3</sub><sup>+</sup> structure possesses  $C_{2\nu}$  symmetry and is analogous to the ground-state structure of the isoelectronic CO<sub>3</sub> complex. The energy difference between the NO<sub>3</sub><sup>+</sup>( $C_{2\nu}$ ) and NO<sub>3</sub><sup>+</sup>( $D_{3h}$ ) structures varies with the degree of electron correlation employed but exceeds 2100 cm<sup>-1</sup> at the CCSD(T)/aug-cc-pVTZ level of theory; this is a factor of 10 larger than the 200 cm<sup>-1</sup>  $\Delta E(D_{3h} - C_{2\nu})$  calculated for NO<sub>3</sub>.<sup>27</sup> Vibrational analysis demonstrates that the  $C_{2\nu}$  structure is a true minimum on the

 $NO_3^+$  potential energy surface while the  $D_{3h}$  structure corresponds to a second-order saddle point. The structural instability of  $NO_3^+$  with respect to distortion away from  $D_{3h}$  geometries is a real result, reproducible using QCISD, CCSD, and CCSD-(T) levels of theory and independent of the basis set. This suggests that symmetry breaking also occurs in the NO<sub>3</sub> radical but that the purely electronic contributions to its molecular structure may be masked by competing constraints imposed by the electron spin considerations.

#### Note Added in Proof

Since the completion of our  $NO_3^+$  work, Eisfeld and Morokuma reported a detailed study of the symmetry-breaking effect in the  $NO_3$  radical.<sup>63</sup> They observed that the "tenacious symmetry breaking" of the  $NO_3$  electronic wave function persists for all methods employing single configurations but can be avoided by a complete active space (CAS) or multireference configuration interaction (MRCI) calculation. While CAS or MRCI calculations are beyond the scope of the present work, we have demonstrated that single-configuration calculations of  $NO_3^+$  are plagued by the same robust symmetry-breaking effects observed for  $NO_3$ . This suggests that sophisticated CAS or MRCI calculations may be able to resolve the structural questions surrounding the  $NO_3^+$  cation.

Acknowledgments. The authors are indebted to Professor Harold S. Johnston for inspiring them to investigate the spectroscopy and physical properties of the nitrogen oxides. The authors also wish to thank the NASA Jet Propulsion Laboratory for ample computing resources to conduct this research. The NASA Office of Space Science and Applications sponsors the Jet Propulsion Laboratory Super-Computer Project.

#### **References and Notes**

(1) Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P.; Canosa Mas, C. E.; Hjorth, J.; Le-Bras, G.; Moortgat, G. K.; Perner, D.; Poulet, G.; Restelli, G.; Sidebottom, H. *Atm. Environ. A* **1991**, 1.

(2) Ishiwata, T.; Fujiwara, I.; Naruge, Y.; Obi, K.; Tanaka, I. J. Phys. Chem. 1983, 87, 1349.

(3) Ishiwata, T.; Tanaka, I.; Kawaguchi, K.; Hirota, E. J. Chem. Phys. 1985, 82, 2196.

(4) Ishiwata, T.; Tanaka, I.; Kawaguchi, K.; Hirota, E. J. Mol. Spectrosc. 1992, 153, 1.

- (5) Kawaguchi, K.; Hirota, E.; Ishiwata, T.; Tanaka, I. J. Chem. Phys. 1990, 93, 951.
- (6) Kawaguchi, K.; Ishiwata, T.; Tanaka, I.; Hirota, E. Chem. Phys. Lett. 1991, 180, 436.
- (7) Kawaguchi, K.; Ishiwata, T.; Hirota, E.; Tanaka, I. Chem. Phys. 1998, 231, 2.
- (8) Hirota, E.; Kawaguchi, K.; Ishiwata, T.; Tanaka, I. J. Chem. Phys. 1991, 95, 771.
- (9) Hirota, E.; Ishiwata, T.; Kawaguchi, K.; Fujitake, M.; Ohashi, N.; Tanaka, I. J. Chem. Phys. **1997**, 107, 2829.
- (10) Friedl, R. R.; Sander, S. P. J. Phys. Chem. 1987, 91, 2721.
- (11) Weaver, A.; Arnold, D. W.; Bradforth, S. E.; Neumark, D. M. J. Chem. Phys. 1991, 94, 1740.
- (12) Kim, B.; Hunter, P. L.; Johnston, H. S. J. Chem. Phys. 1992, 96, 4057.
- (13) Carter, R. T.; Schmidt, K. F.; Bitto, H.; Huber, J. R. Chem. Phys. Lett. 1996, 257, 3.
- (14) Valachovic, L.; Riehn, C.; Mikhaylichenko, K.; Wittig, C. Chem. Phys. Lett. 1996, 258, 5.
- (15) Monks, P. S.; Stief, L. J.; Krauss, M.; Kuo, S. D.; Zhang, Z.; Klemm, R. B. J. Phys. Chem. **1994**, *98*, 10017.
- (16) Wang, D.; Jiang, P.; Qian, X.; Hong, G. J. Chem. Phys. 1997, 106, 3003.
  - (17) Boehm, R. C.; Lohr, L. L. J. Comput. Chem. 1991, 12, 119.
  - (18) Heryadi, D.; Yeager, D. L. J. Chem. Phys. 2000, 112, 4572.
  - (19) Lee, E. P. F.; Wright, T. G. Chem. Phys. Lett. 2000, 318, 1.
- (20) Kim, B.; Johnston, H. S.; Clabo, D. A., Jr.; Schaefer, H. F., III. J. Chem. Phys. 1988, 88, 3204.

- (22) Davy, R. D.; Schaefer, H. F., III. J. Chem. Phys. 1989, 91, 4410.
  (23) Kaldor, U. Chem. Phys. Lett. 1990, 166, 5.
- (24) Kaldor, U. Chem. Phys. Lett. **1991**, 185, 1.
- (25) Stanton, J. F.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1991, 94, 4084.
- (26) Stanton, J. F.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1992, 97, 5554.
- (27) Crawford, T. D.; Stanton, J. F. J. Chem. Phys. 2000, 112, 7873.
  (28) Mayer, M.; Cederbaum, L. S.; Koppel, H. J. Chem. Phys. 1994, 100, 899.

(29) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; John Wiley and Sons: New York, 1986.

- (30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, A.3 ed.; Gaussian, Inc: Pittsburgh, PA, 1998.
- (31) Pople, J. A.; Head Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
  - (32) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 4852.
  - (33) Pople, J. A.; Seeger, R.; Krishnan, R. Int. J. Quantum Chem. Symp.
- **1977**, *11*, 149. (34) Krishnan, R.; Pople, J. A. *Int. J. Quantum Chem.* **1978**, *14*, 91.
  - (35) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
  - (36) Schlegel, H. B. J. Chem. Phys. 1986, 84, 4530.
  - (37) Baker, J. J. Comput. Chem. 1986, 7, 385.
  - (38) Baker, J. J. Comput. Chem. 1987, 8, 563.
- (39) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.

- (40) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
  - (41) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209.
  - (42) Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163.
  - (43) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
  - (44) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358.
- (45) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
  - (46) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
- (47) Peterson, K. A.; Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. **1994**, 100, 7410.
- (48) Wilson, A. K.; van Mourik, T.; Dunning, T. H., Jr. *THEOCHEM* **1996**, *388*, 339.
  - (49) Francisco, J. S.; Williams, I. H. Chem. Phys. 1985, 95, 373.
- (50) van de Guchte, W. J.; Zwart, J. P.; Mulder, J. J. C. *THEOCHEM* **1987**, *37*, 3.
- (51) Froese, R. D. J.; Goddard, J. D. *J. Phys. Chem.* **1993**, *97*, 7484. (52) Pople, J. A.; Head Gordon, M.; Fox, D. J.; Raghavachari, K.;
- Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622.
  (53) Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1990, 93, 2537.
- (54) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J.
   *Chem. Phys.* **1991**, *94*, 7221.
- (55) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 98, 1293.
  - (56) Nyden, M. R.; Petersson, G. A. J. Chem. Phys. 1981, 75, 1843.
  - (57) Petersson, G. A.; Al Laham, M. A. J. Chem. Phys. 1991, 94, 6081.
    (58) Petersson, G. A.; Tensfeldt, T. G.; Montgomery, J. A., Jr. J. Chem.
- Phys. 1991, 94, 6091.
- (59) Montgomery, J. A., Jr.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900.
- (60) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A., Jr. J. Chem. Phys. 1996, 104, 2598.
- (61) Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. **1999**, 110, 2822.
- (62) Sherrill, C. D.; Lee, M. S.; Head-Gordon, M. Chem. Phys. Lett. 2000, 302, 425.
- (63) Eisfeld, W.; Morokuma, K. J. Chem. Phys. 2000, 113, 5587.